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Abstract—We introduce a non-parametric hierarchical
Bayesian approach for open-ended 3D object categorization,
named the Local Hierarchical Dirichlet Process (Local-HDP).
This method allows an agent to recognize new object categories
in real time by using very few examples and interacting with
a non-expert user. This way the model has the open-ended
learning capability to adapt to the environment. Hierarchical
Bayesian approaches like Latent Dirichlet Allocation (LDA) can
transform low-level features to high-level conceptual topics for
3D object categorization. However, the efficiency and accuracy
of LDA-based approaches depend on the number of topics
that is chosen manually. Moreover, fixing the number of topics
for all categories can lead to overfitting or underfitting of the
model. In contrast, the proposed Local-HDP can autonomously
determine the number of topics for each category. The locality
of the model for each object category enables fine-grained
recognition while retaining the efficiency of sharing the common
topics between different object categories. Furthermore, the
online variational inference method has been adapted for fast
posterior approximation in the Local-HDP model. Experiments
show that the proposed Local-HDP method outperforms other
state-of-the-art approaches in terms of accuracy, scalability, and
memory efficiency by a large margin. Moreover, two robotic
experiments have been conducted to show the applicability of
the proposed approach in real-time applications.

I. INTRODUCTION

Most recent object recognition/detection techniques are based
on deep neural networks [8, 9, 11, 16, 23, 24, 18]. These
methods typically need a large labeled dataset for a long train-
ing process. Typically, the number of object categories (class
labels) should be predefined in advance for such methods.
However, in some real-time robotic scenarios, an agent can
face new object categories while operating in the environment.
Therefore, the model should get updated in real-time in an
open-ended manner without completely retraining the model
[2]. Furthermore, object category recognition is not a well-
defined problem because of the large inter-category variation
(Figure 1 (top)), multiple object views for each object (Fig-
ure 1 (bottom)), and concept drift in dynamic environments
[12].

In this research, we propose the Local Hierarchical Dirich-
let Process (Local-HDP), an extension of the Hierarchical
Dirichlet Process [27] method, which can incrementally learn
new topics for each category of objects independently. In
contrast to notable recent works [12, 7, 25] using a predefined
number of topics, Local-HDP is more flexible since it is a non-

Fig. 1: An illustrative example of inter-category variation of
the mug category in the Washington RGB-D dataset(top), and
different object views of a mug (bottom).

Fig. 2: The architecture of the proposed method.

parametric Bayesian model that can autonomously determine
the number of topics for each category at run-time. Moreover,
the introduced locality of the approach enables lifelong open-
ended learning in the model.

Figure 2 shows the processing layers of the proposed Local-
HDP. The tabletop objects are detected in the initial phase.
Subsequently, the hierarchy of the five processing layers is
utilized.

This work extends two approaches, namely Local-LDA
[12] and HDP [27], in four aspects. First, our approach
can autonomously detect the number of required topics to
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Fig. 3: (a) The RGB-D image of a coffee mug. (b) Key-points
selection using voxelizing [12]. (c) Key-points neighborhoods
are represented by different colors. (d) The BoW representa-
tion for the given object.

independently represent the objects in each category, avoiding
the limitation of Local-LDA which requires the number of
topics to be determined in advance. This feature prevents
underfitting or overfitting of the model. Second, our work
extends the hierarchical Dirichlet process [27] by learning and
updating local topics for each object category independently
in an incremental and open-ended fashion. Third, our research
adapts the online variational inference technique [28], which
significantly reduces inference time. Fourth, the proposed local
online variational inference method leads to memory optimiza-
tion. Moreover, a simulated teacher has been developed to
interact with the model and to evaluate its performance in an
open-ended manner.

II. RELATED WORKS

Our approach builds on the Hierarchical Dirichlet Process
(HDP) [27], that is based on Dirichlet process (DP) [6] and
mixture of DPs [1]. Posterior inference is intractable for HDP,
and much research has been done to find a proper approximate
inference algorithm [27, 26, 17]. The Markov Chain Monte
Carlo (MCMC) sampling method for DP mixture models has
been proposed for approximate inference in HDPs [19]. David
Blei et al. proposed variational inference for DP mixtures [3].
Teh et al. [27] proposed the Chinese Restaurant Franchise
metaphor for HDP and used the Gibbs sampling method
for the inference. The online variational inference approach
is proposed by Wang et al. [28] for HDP, which can be
used in online incremental learning scenarios and for large
corpora. Our method is different from HDP, since HDP only
shares the topics among the same categories and not across
different categories. The latter is especially needed in the
case of 3D object categorization for open-ended scenarios
[12]. HDP has further extensions to construct tree-structured
representations for text data that have nested structure [21].
Similar to supervised hierarchical Dirichlet Process (sHDP)
[5], we use the category label of each object. Unlike sHDP,
we learn object categories in an open-ended fashion, while in
sHDP, the number of object categories to be learned should
be defined in advance.

III. METHOD

In Figure 2, the first two layers—the feature layer and BoWs
layer— are the pre-processing layers. In the feature layer, we

Fig. 4: RGB images for objects of different categories with
depth data similarities in the Washington RGBD dataset.

first select key-points for the given object and then compute
a local shape feature for each key-point. Towards this goal,
we have first voxelized1 the object (Figure 3) (b), and then
the nearest point to each voxel center is selected as a key-
point. Afterwards, the spin-image descriptor [10] is used to
encode the surrounding shape in each key-point using the
original point cloud (Figure 3 (c)). This way, each object
view is described by a set of spin-images in the first layer,
Os = {s1, . . . , sN}, where N is the number of key-points.
The obtained representation is then sent to the BoWs layer.

After synthesizing the point cloud of the 3D objects to a set
of visual words in BoW format, the data is ready to be inserted
into the topic layer where the proposed Local-HDP method
is employed. In this layer, the model transforms the low-
level features in BoW format to conceptual high-level topics.
In other words, each object is represented as a distribution
over topics, where each topic is a distribution over visual
words. To this end, we use an incremental inference approach
where the number of categories is not known beforehand and
the agent does not know which additional object categories
will be available at run-time. After constructing the model
in a generative manner, a reverse procedure for inferring the
latent variables from the data is used. We have adapted online
variational inference [28] for the proposed Local-HDP model.
The details of this inference method can be seen in the full-
length paper available at arxiv.org.

IV. EXPERIMENTAL RESULTS

In order to evaluate this approach, two extensive set of exper-
iments have been conducted, namely, offline evaluation and
online (open-ended) evaluation. For offline evaluation of the
proposed Local-HDP and the other state-of-the-art approaches,
we have used the RGB-D restaurant object dataset [14] and the
Washington RGB-D dataset [15] is used for online open-ended
evaluation of the method since it is one of the largest 3D object
datasets. It has 250,000 views of 300 common household
objects, categorized in 51 categories. Figure 4 shows some
of the categories presented in this dataset. Using solely the
depth data (without considering the colors), as it is done in
this paper, it is not a trivial task for humans to detect the
category of these objects.

Table I shows the comparison of Local-HDP with other
state-of-the-art methods in terms of accuracy and run-time.
Local-HDP outperforms all the other methods in terms of
accuracy while maintaining the same run-time as Local-LDA.

Several performance measures have been used to evaluate
the open-ended learning capabilities of the methods, namely:

1http://docs.pointclouds.org/trunk/classpcl 1 1 voxel grid.html
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TABLE I: The comparison of different approaches using the
best parameter values.

Approach Accuracy (%) Run-time (s)
RACE [20] 87.0 1757
BoW [13] 89.0 195

LDA (shared topics) [4] 88.0 227
Local-LDA [12] 91.0 348

HDP (shared topics) [28] 90.33 233
Local-HDP (our approach) 97.11 352

TABLE II: The average result of 10 open-ended experiments
for all the methods.

Approach #QCI #LC AIC GCA(%)
LDA 269 9.1 16.74 51.00%
HDP 753 27.2 12.76 66.14%

Local-LDA 1411 40.6 13.75 69.44%
Local-HDP 1330 51.0 6.85 85.23%

(i) the number of Learned Categories (#LC); (ii) the number
of Question/Correction Iterations (#QCI) by the simulated
user; (iii) the Average number of stored Instances per Cate-
gory (#AIC) ; (iv) Global Categorization Accuracy (GCA),
which represents the overall accuracy in each experiment.
These performance measures have the following interpreta-
tions. LC shows the open-ended learning capability of the
model. #QCI shows the length of the experiment (iterations).
#AIC represents the memory efficiency of the method. A
lower average number of stored instances per category means
a higher memory efficiency of the method. #AIC is also
related to the learning speed. A smaller #AIC means that the
method requires fewer observations to correctly recognize each
category. GCA shows the accuracy of the model in predicting
the right category for each object.

Table II compares the average result of 10 open-ended ex-
periments between Local-HDP and state-of-the-art approaches.
Local-HDP achieved the best performance by learning all the
51 categories, while Local-LDA, HDP, and LDA, on average
learned 40.6, 27.2, and 9.1 categories, respectively. This result
shows the descriptive power of Local-HDP. Moreover, Local-
HDP has the highest GCA among all the methods. It is worth
mentioning that Local-HDP concluded prematurely due to the
“lack of data” condition, i.e., no more categories available in
the dataset. This means that the agent with Local-HDP has the
potential of learning more categories in an open-ended fashion.

V. REAL-TIME ROBOTIC APPLICATION

Two real-time robotic demonstrations have been conducted to
show the real-time application of the proposed method. In
both of these demonstrations a UR5e robotic arm is used to
manipulate the objects located on a table. Moreover, a Kinect
camera is fixed in front of the table to acquire the visual
data for further perceptual analysis. The system detects table-
top objects, draws a bounding box around them and assigns
a tracking ID (TID) to each object (Figures 5.b - 5.d). In
both scenarios, we involved a human user in the loop for
interaction with the robot. In the first scenario, a user can

interact with the system through RViz2 [22] and assign a
category label to each of the detected objects on the table.
After introducing the object category labels to the model,
object categories are detected even if they have been placed
in a different location on the table, which might change the
object view partially due to the perspective or occlusion by the
other objects. Finally, the clearing task is initiated in which
for each individual object, the end-effector of the robotic arm
moves to the pre-grasp position of a target object, and then
grasps the object and puts it into a trash box located on the
table (Figure 5.a). This demonstration showed that the system
was able to detect different object categories and to learn
about new object categories using very few examples on-site.
Furthermore, it was observed that the proposed approach was
able to distinguish geometrically very similar objects from
each other (e.g., Cup vs CokeCan). The video of this robotic
demonstration is available at youtu.be/YPsrBpqXWU4.

The second robotic demonstration has more emphasis on
category recognition of unforeseen objects and performing a
category-specific robotic task. In this demonstration, a user
interacts with the system through voice commands and intro-
duces the initially located objects on the table. Subsequently,
three new objects will be spawned on the table in the Gazebo3

simulator. After the detection of each of the new objects, the
system tells the predicted category to the user and asks for
corrective feedback in case of a wrong prediction. This way the
system learns about new object categories incrementally and
update a category model once a misclassification happened.

Finally, the user commands the robot to clear all the coke
cans from the table and put them into the trash box located
on the table. To accomplish this task, the robot should detect
the pose as well as the label of all objects. Then, the robot
grasps and manipulates all the coke cans from the table while
keeping the rest of the objects from different categories on the
table (Figure 5.c). A video for this robotic demonstration is
available at youtu.be/otxd8D8yYLc.

VI. CONCLUSION

We have proposed a non-parametric hierarchical Bayesian
model called Local Hierarchical Dirichlet Process (Local-
HDP) for interactive open-ended 3D object category learning
and recognition. Besides, we have conducted two robotic
experiments to show the real-time applicability of the pro-
posed approach. An extensive set of experiments have been
conducted in offline and open-ended scenarios to validate
our method and compare its performance with state-of-the-art
methods. Local-HDP outperformed the selected state-of-the-
art methods in offline evaluation by a large margin, achieving
appropriate computation time and object recognition accuracy.
In open-ended evaluation, we have developed a simulated
teacher to assess the performance of all approaches using a
recently proposed test-then-train protocol. Results show that
the overall performance of Local-HDP is better than the best

2 ROS Visualization: http://wiki.ros.org/rviz
3http://http://gazebosim.org/
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a) The robotic setup for the first demonstration.
b) Point cloud and object category visualization in RViz

for the first robotic demonstration.

c) Clearing coke cans from the table for the second
robotic demonstration.

d) The RViz visualization of the recognized categories
for the second robotic demonstration.

Fig. 5: The real-time application of the proposed Local-HDP 3D object category recognition method in a robotic scenario.

results obtained with the other state-of-the-art methods. The
robotic experiments showed that the model can learn new
object categories in real-time using very few examples by
interacting with non-expert human users.
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