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Fig. 1: High level framework of the proposed ST-DETR
architecture. Lower part shows 4 time-stamp inputs consists
of RGB and OF frames for each time-step. Upper part shows
the output of the network.

Abstract—We propose ST-DETR, a Spatio-Temporal
Transformer-based architecture for object detection from a
sequence of temporal frames. We treat the temporal frames as
sequences in both space and time and employ the full attention
mechanisms to take advantage of the features correlations over
both dimensions. This treatment enables us to deal with frames
sequence as temporal object features traces over every location
in the space. We explore two possible approaches; the early
spatial features aggregation over the temporal dimension, and
the late temporal aggregation of object query spatial features.
Moreover, we propose a novel Temporal Positional Embedding
technique to encode the time sequence information. To evaluate
our approach, we choose the Moving Object Detection (MOD)
task, since it is a perfect candidate to showcase the importance
of the temporal dimension. Results show a significant 5% mAP
improvement on the KITTI MOD dataset over the 1-step spatial
baseline.

I. INTRODUCTION

For many years, ConvNets have been the architecture of
choice in computer vision in general, and for performing
object detection tasks in particular. Recently, transformers have

shown promising results compared to ConvNets, in object
detection, [1] ,where the input image is treated as a sequence of
spatial features, and full attention mechanisms are employed
to extract features interactions. This motivates us to extend
DETR to handle the sequence information in both spatial and
temporal dimensions.

In the general problem setup, we need to perform a Spatio-
temporal sequence-to-sequence mapping. The input Spatio-
temporal sequence is formulated as a sequence of frames in
the temporal dimension within a certain window of time, each
is, in turn, a sequence of features in the spatial dimension.
The output Spatio-temporal sequence is also a sequence of
temporal outputs, each having a list of objects queries.

In order to transform DETR into a Spatio-Temporal model,
we undergo some architectural changes. First, we adopt the
classical spatial features extraction, and apply it on each input
frame across the temporal window. Then we modify both the
transformer encoder and decoder to handle the temporal ag-
gregation. Here we have two options, either 1) early temporal
aggregation of the spatial features, resulting in a temporal trace
of features at each spatial location, or 2) later temporal objects
queries aggregation, where we extract the objects queries per
time step, and then stack them, resulting in a trace of objects
queries. The output of either architecture is a list of object
queries features, which are used to predict the bounding boxes
and their corresponding classes. The same Hungarian matching
and bi-partite loss [1] are adopted from DETR.

II. RELATED WORK

Transformer based methods: For object detection in the
DEtection TRansformer (DETR) [1] the input image is treated
as sequence of spatial features. This enables the extension
of the traditional transformer, previously used in NLP [14],
in computer vision problems. Full attention mechanisms are
employed to extract feature interactions in an end-to-end
architecture, followed by bi-partite matching that enables
the replacement of the complex post-processing pipeline in
the corresponding ConvNet architectures during training. The
ground truth to prediction matching is treated as an association
problem and solved using the Hungarian algorithm, producing
one-one mapping that can be used to calculate the loss. While
Panoptic segmentation is possible directly in DETR [1], using
object queries, semantic masks require different architecture



changes. Recent works extend the encoder-decoder architec-
ture using transformers. In SETR [16], the encoder is kept
convolution based same as in FCN [8], while the decoder
is based on the transformer decoder architecture, with the
learnable queries using progressive upsampling. The same idea
is used in TransUNET [2], following the UNet architecture
with skip connections between the encoder and decoder. In
[15], a full transformer encoder-decoder architecture is used,
which is the closest to the architecure used for MOSeg in
this paper. However, in [15], the decoded segmentation mask
is taken as the decoder attention weights directly, while in
our case, we keep the Multi-Head attention query-key-value
structure to decode the final segmentation mask.

Spatio-Temporal methods Like ConvNets in spatial com-
puter vision, Recurrent models have been the architecture
of choice for sequence models, especially in NLP. In com-
puter vision, ConvNets and LSTM mixed architectures, like
ConvLSTM have been used to handle both the spatial and
temporal nature of videos, like in Moving Object Detection
(MOD) [12, 13], and Instance Moving Object Segmentation
[10] tasks. Recently full attention transformers [14] [9] are
replacing RNN, LSTM, and GRU in NLP, taking advantage
of the parallel encoding process, which removes the sequential
nature of recurrent models. This motivates our work here to
extend the DETR to handle also the temporal dimension, and
to replace the ConvLSTM models to take advantage of the fast
nature of the transformer architectures.

III. PROPOSED METHOD

A. Spatio-Temporal Detection Transformer

To transform the vanilla 1-step DETR to deal with temporal
sequences, firstly, we have to first deal with multiple streams
across T time steps, each having a spatial feature IHW×d,
resulting in IHW×Td streams. Then using Spatio-Temporal
Transformer Encoder (ST-TE) which performs self-attention
over the spatial HW dimension, resulting in E ∈ RHW×Td.
Finally, by exploiting the Spatio-Temporal Query Transformer
Decoder (ST-TD), which performs the query-to-spatial multi-
head attention transformation, resulting in D ∈ RNq×dfinal ,
where dfinal is the final dimension after spatio-temporal
queries aggregation. The rest of the components remains the
same as in vanilla transfomer.

One can think of two alternatives of temporal features
aggregation in both the ST-TE and ST-TD, where we can early
aggregate the spatial features over the temporal dimension in
the ST-TE, or defer the temporal aggregation to the ST-TD to
be done late over the object queries.

1) Early Temporal Aggregation: In this alternative, the list
of T spatial features IHWxd are aggregated and flattened into
IHWxTD. This aggregated tensor IHWxTD can thought of as
a spatial map of T temporal traces of spatial features, each of
dimension d, mapped to the spatial locations H ×W . This is
visualized in Figure 2. The ST-TE will then perform multi-
head self-attention over the spatio-temporal map of object
features traces. In this case, we have Q = V = K =
IHW×Td. The spatio-temporal features traces attention map

TABLE I: Detailed comparisons on the effect of the motion
features.

Method mAPTotal AP50 AP75

RGB-only 23% 42.2% 23.7%
RGB+RGB 25.3% 47.2% 24.5%
RGB + OF 33.9% 59.3% 37.2%

WHW×HW =Softmax(QKT ) is then used to obtain the spatio-
temporal features EHW×Td = WHW×HW IHW×Td.

The ST-TD will perform multi-head query-to-spatio-
temporal features traces attention, where Q ∈ RNq×Td and
V = K = EHW×Td. The query-spatio-temporal features
traces attention map will be WNq×HW =Softmax(QKT ),
resulting in DNq×Td = WNq×HWEHW×Td. This repre-
sents the final object queries spatio-temporal features, where
dfinal = Td in this case.

2) Late Temporal Aggregation: We could also defer the
temporal aggregation until the object queries are obtained
per each time step. In this case, the resulting list of T
spatial features each of IHW×d dimension are not stacked and
flattened as in the early aggregation. The ST-TE is formed on
T Spatial Transformer Encoders, same as in the vanilla DETR,
each performing multi-head self-attention, resulting also in a
list of T spatial features EHWxd. Finally, the ST-TD is formed
of two levels of decoders; spatial and temporal query decoders.

Spatial Query Decoders which are a list of T decoders,
each performing multi-head attention, resulting in a list of T
query features each is DNq×d, which are then reshaped into an
aggregated tensor over the temporal dimension to be DT×Nqd.
Those represent the Spatio-temporal queries traces.

Temporal Query Decoder which transforms the Spatio-
temporal queries traces into the final query features, using
multi-head attention. The Spatio-temporal queries traces are
first flattened such that V = K = DTNq×d. The attention
learn-able object queries will be Q ∈ Nq × , resulting in
an attention map of dimensions WNq×TNq

=Softmax(QKT ).
This is illustrated in Figure 2. The TNq dimension repre-
sents the flattened late T object queries features, each of
dimension d. This can be thought of as the temporal traces
of objects queries as opposed to the objects features traces
in the early aggregation alternative. while the Nq dimension
represents the final object queries of the last time step, which
are to be learned from attending to all the T times steps
objects queries. Thus, the final object query features are then
DNq×d = WNq×TNqDTNq×d.

B. Sequence-to-sequence prediction

One can notice from Figure 2 that the temporal attention
takes place between the last time (t = T ) step queries; QNqxd

and the temporal traces of object queries over all the previous
steps; DTNqxd. The reason is that we predict the objects in
the last frame, given all the features of the previous frames.
However, it is straightforward to modify the architecture to
obtain a sequence of temporal predictions of Nq object queries
per each time step T . Simply, in the Temporal Query Decoder,



Fig. 2: Architectural details of the Early vs. Late Temporal Aggregation variants.

Fig. 3: Attention maps for each quires and the corresponding output bounding box .

we need to set the queries to QTNq×d, and thus we have a
temporal attention map WTNq×TNq . This can be thought of
as a sequence-to-sequence prediction problem, similar to the
Neural Machine Translation (NMT) setup in [14], where we
have an input sequence of the spatial feature over time, and
we predict another sequence of object bounding boxes and
classes that corresponds to those inputs.

C. Temporal Positional Encoding (TPE)

Transformers are originally presented as a replacement to
recurrent models, due to their fast parallel encoding nature
[14]. However, this comes at the cost of losing the sequen-
tial information of the input. To overcome that, positional
encoding embedding was proposed in [14]. Following on
that, the vanilla 1-step DETR [1] treats the input features

TABLE II: Comparing the Early architecture, Late architec-
ture, and vanilla one step DETR.

Method mAPTotal AP50 AP75

1-Step MODETR [9] 33.9% 59.3% 37.2%
Early 38.7% 63.1% 44.6%
Late 34% 61.1% 36.1%

as being sequential in the spatial dimension HW , which
leads to the proposal of Spatial Positional Encoding (SPE).
In ST-DETR, a similar encoding is needed to distinguish the
temporal sequential information of frames. Hence, we propose
a Temporal Positional Encoding (TPE), which is added just
before the temporal aggregation takes place, being it early



TABLE III: Quantitative comparison results showing the effect
of temporal window size

Method mAPTotal AP50 AP75

Early 36% 62.3% 43.4%
Early+TPE 38.7% 63.1% 44.6%

across the spatial features traces TPEHWxd or late across the
object queries traces TPENqxd, see Figure 2.

IV. EXPERIMENTS AND RESULTS

In this section, we first describe the used datasets. After
that, we specify the experimental setup, including all hyper-
parameters, and hardware specifications. Finally, We design
our experiments to evaluate each of our contributions, in the
form of an ablation study to evaluate the impact of each one.

A. Dataset

We use the extended version [11] of the publicly available
KittiMoSeg dataset [13], that consists of 12919 frames which
are split into 80% for training, and 20% for testing. The image
resolution is 1242×375, and the labels determine whether the
object is moving or static, includes the object bounding box
and the motion mask.

B. Experimental Setup

We initialize our backbone networks with the weights pre-
trained on ImageNet [3], then train the whole network for
30 epochs on COCO dataset [7] while freezing the backbone
during the first 10 epochs. In all our experiments, ResNet-50
[4] was used. Our network is trained with Adam optimizer [6]
with a scheduled learning rate that is decreased from 1e−3 to
1e−5, the whole network is end-to-end trained with learning
rate exponentially decayed. We train a total of 200 epochs,
using a warm-up learning rate of 1e−3 to 5e−3 in the first 5
epochs. 460 × 140 resolution images have been used across
all the experiments. Our approach is implemented in Python
using PyTorch on a PC with Intel Xeon(R) 4108 1.8GHz CPU,
64G RAM, Nvidia Titan-XP.

C. Motion Features

Previous works on MOD [12, 13] indicates that input
features can have a strong impact on the results. In particular,
features holding motion cues can be of high impact. Thus,
we evaluate the best input features at each time step, where
we compare RGB, RGB+RGB, and RGB+OF options. In this
setup, we use the vanilla 1-step DETR architecture. Optical
flow is generated using FlowNet 2.0 [5]. The results are infavor
of the RGB+OF setup as shown in Table I.

D. Early vs Late temporal aggregation

In this setup, we evaluate the two architectural alternatives
in Figure 2. For the sake of comparison, we fix the time
window T = 2, the number of queries Nq = 100 and the
transformer hidden dimension d = 256. Results are shown in
Table II. Both results of early and late architectures improve

TABLE IV: Quantitative comparison results showing the effect
of the temporal window size T

T mAPTotal AP50 AP75

1-Step 33.9% 59.3% 37.2%
2-Steps 38.7% 63.1% 44.6%
4-Steps 38.7% 64.8% 43%

over the 1-step baseline. However, the early architecture pro-
vides a significant improvement of 5% mAP.

E. Effect of TPE

In this experiment, we evaluate the addition of TPE. Build-
ing on the results of early temporal aggregation in Table II,
we perform this comparison on the early temporal setup as
shown in Figure 2. As expected, results in Table III, show 2%
mAP improvement over the variant without TPE.

F. Effect of the temporal window size T

In this setup, we evaluate the effect of the increased window
size, for T = 1, 2, 4. Results in Table IV show increased
performance with the increase of T . However, a saturation
barrier is hit at T = 4.

V. CONCLUSION

In this work, we extend the vanilla DETR architecture, into
a Spatio-Temporal model to deal with video inputs. We explore
various design choices in our endeavor; the early vs. late
temporal aggregation setups. Results are in favor of the early
architecture which deals with temporal traces of spatial motion
features. Our analysis of the 1-step motion features suggests
that the best option is to feed the RGB+OF frames of the
input 1-step scene, which is also in line with previous works.
We also propose an extra Temporal Positional Embedding
(TPE) step, to enable the temporal differentiation of features.
Results show improved performance with TPE introduced to
the architecture. The new ST-DETR architecture achieves 5%
mAP improvement on the KITTI MOD dataset.
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