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Fig. 1: Comparison of the control results between a 2D-based baseline and our 3D-aware approach. The task here is to achieve the
configuration shown on the left, observed from a viewpoint that is outside the training distribution. The agent only takes a single-view visual
observation as input from a viewpoint that is vastly different from the goal (images with blue frames). Our method generalizes well in this
scenario and outperforms the 2D-based baseline, demonstrating the benefits of the learned 3D-aware scene representations.

Abstract—Humans have a strong intuitive understanding of
the 3D environment around us. The mental model of the physics
in our brain applies to objects of different materials and enables
us to perform a wide range of manipulation tasks that are far
beyond the reach of current robots. In this work, we desire to
learn models for dynamic 3D scenes purely from 2D visual ob-
servations. Our model combines Neural Radiance Fields (NeRF)
and time contrastive learning with an autoencoding framework,
which learns viewpoint-invariant 3D-aware scene representations.
We show that a dynamics model, constructed over the learned
representation space, enables visuomotor control for challenging
manipulation tasks involving both rigid bodies and fluids, where
the target is specified in a viewpoint different from what the robot
operates on. When coupled with an auto-decoding framework,
it can even support goal specification from camera viewpoints
that are outside the training distribution. We further demonstrate
the richness of the learned 3D dynamics model by performing
future prediction and novel view synthesis. Finally, we provide
detailed ablation studies regarding different system designs and
qualitative analysis of the learned representations.

I. INTRODUCTION

Existing state-of-the-art model-based systems operating from
vision treat images as 2D grids of pixels [5 I8} 33]]. The world,
however, is three-dimensional. Modeling the environment from
3D enables amodal completion and allows the agents to
operate from different views. Therefore, it is desirable to
obtain good 3D-aware representations of the environment from
2D observations to achieve better task performance when an
accurate inference of 3D information is essential, which can
further make it easier to specify tasks and learn from third-
person videos, etc.

In this work, we aim to leverage recently proposed 3D-
structure-aware implicit neural scene representations for vi-
suomotor control tasks. We thus propose to embed neural
radiance fields [20] in an auto-encoder framework, enabling
tractable inference of the 3D-structure-aware scene state for
dynamic environments. By additionally enforcing a time-
contrastive loss on the estimated states, we ensure that the
learned state representations are viewpoint-invariant. We then
train a dynamics model that predicts the evolution of the state
space conditioned on the input action, enabling us to perform
control in the learned state space. Though the representation
itself is 3D-structured, the convolutional encoder is not. At test
time, we overcome this limitation by performing inference-via-
optimization [26} [36], enabling accurate state estimation even
for out-of-distribution camera poses and, therefore, control
of tasks where the goal view is specified in an entirely
unseen camera perspective. These contributions enable us to
perform model-based visuomotor control of complex scenes,
modeling both 3D dynamics of rigid objects and fluids. Through
comparison with various baselines, the learned representation
from our model is more precise at describing the contents of 3D
scenes, which allows it to accomplish control tasks involving
both rigid objects and fluids with significantly better accuracy
(Figure [T). Please see our video for better visualization.

We summarize our contributions as follows: (i) We extend an
autoencoding framework with a neural radiance field rendering
module and time contrastive learning that allows us to learn 3D-
aware scene representations for dynamics modeling and control
purely from visual observations. (ii) By incorporating the auto-
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Fig. 2: Overview of the training procedure. Left: an encoder that maps the input images into a latent scene representation. The images
are first sent to an image encoder to generate the image feature representations v. Then we combine the image features from the same time
step using a state encoder to obtain the state representation s;. A time contrastive loss is applied to enable our model to be invariant to
camera viewpoints. Middle: a decoder that takes the scene representation as input and generates the observation image conditioned on a
given viewpoint. We use an L2 loss to ensure the reconstructed image to be similar to the ground truth image. Right: a dynamics model that
predicts the future scene representations S¢41 by taking in the current representation s; and action a:. We use an L2 loss to enforce the
predicted latent representation to be similar to the feature representation s;11 extracted from the true visual observation ;4.

decoder mechanism at test time, our framework can adjust the
learned representation and accomplish the control tasks with
the goal specified from camera viewpoints outside the training
distribution. (iii) We are the first to augment neural radiance
fields using a time-invariant dynamics model, supporting future
prediction and novel view synthesis across a wide range of
environments with different types of objects.

II. 3D-AWARE REPRESENTATIONS FOR DYNAMICS
MODELING

Inspired by Neural Radiance Fields (NeRF) [20], we propose
a framework that learns a viewpoint-invariant model for
dynamic environments. As shown in Figure 2] our framework
has three parts: (1) an encoder that maps the input images
into a latent state representation, (2) a decoder that generates
an observation image under a certain viewpoint based on the
state representation, and (3) a dynamics model that predicts
the future state representations based on the current state and
the input action.

A. 3D-Aware Scene Representation Learning

Neural Radiance Field. Given a 3D point x € R? in a
scene and a viewing direction unit vector d € R3 from a

camera, NeRF learns to predict a volumetric radiance field.

This is represented using a differentiable rendering function
fnerr that predicts the corresponding density o and RGB color
c using fnere(,d) = (o, ¢). To render the color of an image
pixel, NeRF integrates the information along the camera ray
using C(r) = :'“ T(h)o(h)c(h)dh, where r(h) = o+ hd is
the camera ray with its orlgln o S R?’ and unit direction vector
d € R3, and T'(h) = exp(— fh ) is the accumulated
transparency between the pre- deﬁned near depth hye, and
far depth hg, along that camera ray. The mean squared error
between the reconstructed color C' and the ground truth C' is:

C(r)|3. (1)

Lre =Y C(r) -
™

Neural Radiance Field for Dynamic Scenes. One key
limitation of NeRF is that it assumes the scene is static. For a
dynamic scene, it must learn a separate radiance field fnerr
for each time step. This severely limits the ability of NeRF
to model environments that change over time, as it is both
time-consuming and unclear how to transfer knowledge across
time or when a new scene is similar to an old one. While other
models have shown generalization across scenes [36} 24]], these
representations do not capture fine details. To enable fnerr
to model dynamic scenes, we learn an encoding function fe,.
that maps the visual observations to a feature representation
s for each scene and learn the volumetric radiance field
decoding function based on s. Let {I;} denotes the set of
2D images that capture a 3D scene at time ¢ from one or more
camera viewpoints. The image taken from the i viewpoint
is represented as IZ. We use ResNet-18 [[10] to extract a
feature vector for each image. We take the output of ResNet-
18 before the pooling layer and sent it to a fully-connected
layer, resulting in a 256 dimension image feature v{. This
image feature is concatenated with the corresponding camera
viewpoint information (a 16-D vector obtained by flattening the
camera view matrix). The concatenated feature is processed
using a small multilayer perceptron (MLP) to generate the
final image feature. The scene representation s; is generated
by first averaging the image features across multiple camera
viewpoints and then being encoded using another small MLP.

Given a 3D point x, a viewing direction unit vector d, and
a scene representation sy, we learn a function fye.(x,d, s¢) =
(0¢, ¢;) to predict the radiance field represented by the density
o and RGB color ¢;. Similar to NeRF, we use the integrated
information along the camera ray to render the color of image



pixels from an input viewpoint and then compute the image
reconstruction loss using Equation [I] During each training
iteration, we render two images from different viewpoints to
calculate more accurate gradient updates. fj. depends on the
scene representation sy, forcing it to encode the 3D contents
of the scene to support rendering from different camera poses.

Time Contrastive Learning. To enable the image encoder
to be viewpoint invariant, we regularize the feature representa-
tion of each image v} using multi-view time contrastive loss
(TCN) [34] (see Figure [2h). The TCN loss encourages features
of images from different viewpoints at the same time step to be
similar, while repulsing features of images from different time
steps to be dissimilar. More specifically, given a time step t,
we randomly select one image I} as the anchor and extract its
image feature v} using the image encoder. Then we randomly
select one positive image from the same time step but different
camera viewpoint Iti/ and one negative image from a different
time step but the same viewpoint I?,. We use the same image
encoder to extract their image features vi and v},. Similar to
[34], we minimize the following time contrastive loss:

R A
Lic = max (lv; —v; |3 — [[v; = vi/ ][5 + @, 0), @)

where « is a hyper-parameter denoting the margin between
the positive and negative pairs.

B. Learning the Predictive Model

After we have obtained the latent state representation s,
we use supervised learning to estimate the forward dynamics
model, 8,11 = fayn(St,a¢). Given s, and a sequence of
actions {a;, a1, ...}, we predict H steps in the future by
iteratively feeding in actions into the one-step forward model.
We implement fqy, as an MLP network which is trained by
optimizing the following loss function:

H
['dyn = Z H~§t+h - 3t+h||§> 3)
h=1
where Siyn = fayn(8t4h—1,Qt4n-1),8 = s;. We define
the final loss as a combination of the image reconstruction
loss, the time contrastive loss, and the dynamics prediction
loss: £ = Lyec + Lic + Layn. We first train the encoder fene
and decoder fg. together using stochastic gradient descent
(SGD) by minimizing L. and L, which makes sure that the
learned scene representation s encodes the 3D contents and is
viewpoint-invariant. We then fix the encoder parameters, and
train the dynamics model fgy, by minimizing Lgy, using SGD.
See the supplementary materials for the network architecture
and training details.

ITII. VISUOMOTOR CONTROL
A. Online Planning for Closed-Loop Control

When given the goal image I%°¥ and its associated camera
pose, we can feed them through the encoder fe,. to get the state
representation for the goal configuration s&°¥, We use the same
method to compute the state representation for the current scene
configuration s;. The goal of the online planning problem
is to find an action sequence aj,...,ar—; that minimizes

the distance between the predicted future representation and
the goal representation at time 7. As shown in Figure [3j,
given a sequence of actions, our model can iteratively predict
a sequence of latent state representations. The latent-space
dynamics model can then be used for downstream closed-loop
control tasks via online planning with model-predictive control
(MPC), which is used to get feedback from the environment and
give the agent a chance to adjust the current action sequence.
We formally define the online planning problem as follows:

min  [|s* — 573,

ai,...,ar—1

“4)

S.t. .§1 = 81, §t+1 = fdyn(étv at)'

Many existing off-the-shelf model-based RL methods can be
used to solve the MPC problem [4} 21, |9, [7, [19] [13] [14]. We
experimented with random shooting, gradient-based trajectory
optimization, cross-entropy method, and model-predictive path
integral (MPPI) planners [44] and found that MPPI performed
the best. MPPI is a sampling-based, gradient-free optimizer
that considers temporal coordination between time steps when
sampling action trajectories, which is the main planner in the
subsequent experiments (Figure 4] and [5).

B. Auto-Decoder for Viewpoint Extrapolation

End-to-end visuomotor agents can undergo significant per-
formance drop when the test-time visual observations are
captured from camera poses outside the training distribution.
The convolutional image encoder suffers from the same problem
as it is not equivariant to changes in the camera pose, meaning
it has a hard time generalizing to out-of-distribution camera
views. As shown in Figure 3p, when encountered an image
from a viewpoint outside training distribution, with a pixel
distribution vastly different from what the model is trained on,
passing it through the encoder fe,. will give us an amortized
estimation of the scene representation s;. It has a high chance
that the decoded image is different from the ground truth as
the viewpoint has never been encountered during training.

We fix this problem at test time by applying the inference-by-
optimization (also named as an auto-decoding) framework that
backpropagates through the volumetric renderer and through
the neural implicit representation into the state estimate [26)
36]. This is inspired by the fact that the rendering function,
faee(x,d, st) = (04, ;) is viewpoint equivariant, where the
output only depends on the state representation sy, the location
x, and the ray direction d, meaning that the output is invariant
to the camera position along the camera ray, i.e., even we
move the camera closer or farther away along the camera
ray, fqec still tends to generate the same results. We leverage
this property and calculate the L2 distance between the input
image and the reconstructed image L,q = ||I; — I]|3, and then
update the scene representation s; using stochastic gradient
descent. We repeat this updating process K times to derive the
state representation of the underlying 3D scene. Note that this
update only changes the scene representation while keeping the
parameters in the decoder fixed. The resulting representation
is used as s£° in Equation |4 to solve the planning problem.
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Fig. 3: Forward prediction and viewpoint extrapolation. (a) We first feed the input image(s) at time ¢ to the encoder to derive the scene
representation s;. The dynamics model then takes s; and the corresponding action sequence as input to iteratively predict the future. The
decoder synthesizes the visual observation conditioned on the predicted state representation and an input viewpoint. (b) We propose an
auto-decoding inference-via-optimization framework to enable extrapolated viewpoint generalization. Given an input image I; taken from a
viewpoint outside the training distribution, the encoder first predicts the scene representation s;. Then the decoder reconstructs the observation
I; from s; and the camera viewpoint from I;. We calculate the L2 distance between I; and I; and backpropagate the gradient through the
decoder to update s;. The updating process is repeated for K iterations, resulting in a more accurate s; of the underlying 3D scene.
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Fig. 4: Qualitative control results of our method on three types of testing scenarios. The image on the right shows the target configuration
we aim to achieve. The left three columns show the control process, which are also the input images to the agent. The fourth column is the
control results from the same viewpoint as the goal image. Trial #1 specifies the goal using a different viewpoint from the agent’s but has
been encountered during training. Trial #2 uses a goal view that is an interpolation of training viewpoints. Trial #3 uses an extrapolated
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distribution and is different from the viewpoint observed by the agent (bottom-left image of each block). Our final control results are much
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APPENDIX
A. Ewnvironments & Evaluation Metrics

Environments. We consider the following four environments
that involve both fluid and rigid objects for evaluating the
proposed model and baseline approaches. The environments are
simulated using NVIDIA FleX [18]. (1) FluidPour (Figure ):
This environment contains a fully-actuated cup that pours fluids
into a container at the bottom. (2) FluidShake (Figure [8p):
A fully-actuated container moves on a 2D plane. Inside the
container are fluids and a rigid cube floating on the surface.
(3) RigidStack (Figure ): Three rigid cubes form a vertical
stack and are released from a certain height but in different
horizontal positions. They fall down and collide with each
other and the ground. (4) RigidDrop (Figure [8d): A cube falls
down from a certain height. There is a container fixed at a
random position on the ground. The cube either falls into the
container or bounces out.

Evaluation Metrics. We use the first two environments, i.e.,
FluidPour and FluidShake, to measure the control performance,
where we specify the target configuration of the control task
using images from (1) one of the viewpoints encountered
during training, (2) an interpolated viewpoint between training
viewpoints, and (3) an extrapolated viewpoint outside the
training distribution (Figure [4)).

We provide quantitative evaluations on the control perfor-
mance in FluidPour and FluidShake by extracting the particle
set from the simulator, and measure the Chamfer distance
between the result and the goal, which we denote as “Chamfer
Dist.”. In FluidPour, we provide additional measurements on
the L2 distance of the position/orientation of the cup towards
the goal, denoting as “Position Error” and “Angle Error’
respectively. In FluidShake, we calculate the L2 distance of
the container and cube’s position towards the goal and denote
them as “Container Error” and “Cube Error” respectively.

bl

B. Baseline Methods

For comparison, we consider the following three baselines:
TC: Similar to [34], it only uses time contrastive loss for
learning the image feature without having to reconstruct the
scene. We learn a dynamics model directly on the image
features for control. TC+AE: Instead of using Neural Radiance
Fields to reconstruct the image, this method uses the standard
convolutional decoder to reconstruct the target image when
given a new viewpoint. This would then be similar to [6]]
augmented with a time contrastive loss. NeRF: This method
is a direct adaptation from the original NeRF paper [20] and
is the same as ours except that it does not include the time
contrastive loss during training and the auto-decoding test-
time optimization. We use the same dynamics model shown in
Figure [2b and train the model for each baseline respectively for
dynamic prediction. We use the same feedback control method,
i.e., MPPI [44]], for our model and all the baselines.

C. Control Results

Goal Specification from Novel Viewpoints. Figure @
shows the goal configuration, and we ask the learned model

to perform three control trials where the goal is specified
from different types of viewpoints. The left three columns
show the MPC control process from the agent’s viewpoint.
The fourth column visualizes the final configuration the agent
achieves from the same viewpoint as the goal image. Trial
#1 specifies the goal using a different viewpoint from the
agent’s but has been encountered during training. Trial #2
uses a goal view that is an interpolation of training viewpoints.
Our agent can achieve the target configuration with a decent
accuracy. For trial #3, we specify the goal view by moving the
camera closer, higher, and more downwards with respect to the
container. Note this goal image view is outside the distribution
of training viewpoints. With the help of test-time auto-decoding
optimization introduced in the main paper Section [[II-B] our
method can successfully achieve the target configuration as
shown in the figure.

Baseline comparisons. We benchmark our model with the
baselines by assessing their performance on the downstream
control tasks. Figure [5] shows the qualitative comparison
between our model (Ours), a variant of our model that does not
perform the auto-decoding test-time optimization (Ours w/o
AD), and the best-performing baseline (TC+AE) introduced in
Section |B| We find that when the target view is outside the
training distribution and vastly different from the agent view
(bottom left image in each trial block), our full method shows a
much better performance in achieving the target configuration.
The variant without auto-decoding optimization and TC+AE
fail to accomplish the task and exhibit an apparent deviation
from the ground truth in the 3D points space.

We also provide quantitative comparisons on the control
results. Figure [6] shows the performance in the FluidPour and
FluidShake environments. We find our full model significantly
outperforms the baseline approaches in both environments un-
der all scenarios and evaluation metrics. The results effectively
demonstrate the advantages of the learned 3D-aware scene
representations, which contain a more precise encoding of the
contents in the 3D environments.

D. Analysis of the Learned Model

To better understand why our 3D-aware model outperforms
other baselines in the downstream control tasks, we provide a
deeper investigation of the learned state representation.

Nearest Neighbor Search Using the Learned Represen-
tation. When the goal image is specified from a viewpoint
different from the agent’s view, to ensure the planning problem
still work, it is essential that the distance in the learned feature
space reflects the distance in the actual 3D space, i.e., scenes
that are more similar in the real 3D space should be closer in
the learned feature space, even if the visual observations are
captured from different viewpoints. We visualize the nearest
neighbor results in Figure [/} Given a query image, we search
its nearest neighbors based on their state representation s.
Even if the images look quite different from each other, the
learned 3D-aware scene representations can retrieve reasonable
neighborhood images that share similar 3D contents, indicating
that the learned 3D-aware scene representations hold a good
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(a) Quantitative control results on FluidPour (b) Quantitative control results on FluidShake

Fig. 6: Quantitative comparisons between our method and baselines on the FluidPour and FluidShake. In each environment, we
compare the results using three different evaluation metrics under three settings, i.e., (1) the target image view seen during training, (2) the
target image view is inside the training distribution but not seen during training (interpolation), and (3) the target image view is outside
the training distribution (extrapolation). The height of the bars indicates the mean, and the error bar denotes the standard error. Our model

significantly outperforms all baselines under all testing settings.
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Fig. 7: Nearest neighbor (NN) results using our learned state representation. Given a query image (red boundary), we search its nearest
neighbors based on their state representation. Our learned scene representations can retrieve reasonable neighbor images, indicating that our
state representations retain a good estimation of the contents inside the 3D scene and are invariant to camera poses.

understanding of the real 3D scene and are invariant to camera
viewpoints.

Dynamic Prediction and Novel View Synthesis. Condi-
tioned on a scene representation and an input action sequence,
our dynamics model fg4,, can iteratively predict the evolution
of the scene representations. Our decoder can then take the
predicted state representation and reconstruct the corresponding
visual observation from a query viewpoint. Figure [8| shows
that our model can accurately predict the future and perform
novel view synthesis on four environments involving both fluid
and rigid objects, suggesting its usefulness in trajectory opti-
mization. Please check our video results in the supplementary
material for better visualization.

E. Model Details

In the decoder model, we use a similar network architecture
as the NeRF paper [20]. As shown in Figure [9] we send a
3D point € R?, a camera ray d € R?, and a state feature
representation s; into a fully-connected network and output
the corresponding density o, and RGB color ¢;.

F. Environment Details

In the FluidPour environment, we generated 1,000 trajec-
tories for training. Each trajectory has 300 frames with 20
camera views sampled around the objects with a fixed distance
towards the world origin. The action space for the control task
is the position and tilting angle of the cup, which are randomly
generated when constructing the training set.

In the FluidShake environment, we generated 1,000 tra-
jectories for training. Each trajectory has 300 frames with 20
camera views sampled around the objects with a fixed distance
towards the world origin. The action space for the control task is

the 2D location of the container in the world coordinate, which
is also randomly generated when constructing the training set.

In the RigidStack environment, we generated 800 trajecto-
ries for training. Each trajectory has 80 frames with 20 camera
views sampled around the objects with a fixed distance towards
the world origin.

In the RigidDrop environment, we generated 1, 000 trajecto-
ries for training. Each trajectory has 50 frames with 20 camera
views sampled around the objects with a fixed distance towards
the world origin.

G. Training Details

For the encoder and decoder model as described in Figure
we use the Adam optimizer with the initial learning rate 5e~*
and decreased to 5e~° for all the experiments. The batch
size is 2. The hyperparameters in the decoder are the same
as the original NeRF model [20] except the near and far
distance between the objects and cameras are different in
our environments. In our FluidPour environment, we have
near = 2.0 and far = 8.0. In our FluidShake environment,
we have near 2.0 and far 7.0. In our RigidStack
environment, we have near 2.0 and far = 7.0. In our
FluidPour environment, we have near = 2.0 and far = 6.0.

H. Control Details

The number of updating iteration for the auto-decoding test-
time optimization K is 500. The number of sampled trajectories
M during MPPI optimization is set to 1,000. The number of
iterations L for updating the action sequence is set to 100 for
the first time step, and 10 for the subsequent control steps to
maintain a better trade-off between efficiency and effectiveness.
The reward-weighting factor « is set to 1 and the filtering
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Fig. 8: Forward prediction and novel view synthesis on four environments. Given a scene representation and an input action sequence,
our dynamics model predicts the subsequent latent scene representation, which is used as the input of our decoder model to reconstruct the
corresponding visual observation based on different viewpoints. In each block, we render images based on the open-loop future dynamic
prediction. Images in the dotted box compare the novel view synthesis results of our model in the last time step with the ground truth from

three different viewpoints.

coefficient (3 is specified as 0.7. The control horizon 7' is set
as 80 both for FluidPour and FluidShake. The hyperparameters
are the same for all compared methods.

1. Related Work

3D Scene Representation Learning. Prior work leverages
the latent spaces of autoencoder-like models as learned repre-
sentations of the underlying 3D scene to enable novel view
synthesis from a single image [45, 39]. Eslami et al. [6] embed
this approach in a probabilistic framework. To endow models
with 3D structures, voxelgrids can be leveraged as neural
scene representations [29] 22} [35] 42} 149], while others have
tried to predict particle sets from images [15]. Sitzmann et al.
[36] propose to learn neural implicit representations of 3D
shape and appearance supervised with posed 2D images via
a differentiable renderer. Generalizing across neural implicit
representations can also be realized by local conditioning
on CNN features [30, 41, 47]], but this does not learn a
global representation of the scene state. Alternatively, gradient-
based meta-learning has been proposed for faster inference
of implicit neural representations [37]]. Deformable scenes
can be modeled by transporting input coordinates to neural
implicit representations with an implicitly represented flow
field [23L 27, 28} 140, (17, 13} 146} 25]; however, they typically
fit one trajectory and cannot handle different initial conditions
and external action inputs, limiting their use in control.

Model-Based RL in Robotic Manipulation. We can cate-
gorize model-based RL methods by whether they use physics-
based or data-driven models, and whether they assume full
state access or only visual observation. Methods that rely on

first principles typically assume full-state information of the
environment [11} 48] and require the knowledge of the object
models, making them hard to generalize to novel objects or
partially observable scenarios. For data-driven models, people
have attempted to learn a dynamics model for closed-loop
planar pushing [2] or dexterous manipulation [21]]. Schenck and
Fox [311132] tackle a similar fluid pouring task via closed-loop
simulation. Although they have achieved impressive results,
they rely on state estimators customized for specific tasks,
limiting their applicability to more general and diversified
manipulation tasks.

Various model-based RL methods have been proposed to
learn state representations from visual observations, such as
image-space dynamics [7, 14, 5, 138]], keypoint representation [[12}
19, [16], and low-dimensional latent space [43, 9, [8 133].
Some works learn a meaningful representation space using
reconstruction loss [9} [8]]. Others jointly train the forward
and inverse dynamics models [1l], or use time contrastive loss
to regularize the latent embedding [34]. We differ from the
previous methods by explicitly incorporating a 3D volumetric
rendering process during training.
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Fig. 9: A visualization of our decoder network architecture. All layers are standard fully-connected layers, black arrows indicate layers
with ReLU activations, orange arrows indicate layers with no activation, dashed black arrows indicate layers with sigmoid activation, and
“+” denotes vector concatenation. We concatenate the positional encoding of the input location () and our learned state representation
s; and pass them through 8 fully-connected ReLU layers, each with 256 channels. We follow the NeRF [20] architecture and include a
skip connection that concatenates this input to the fifth layer’s activation. An additional layer outputs the volume density o: (which is
rectified using a ReLU to ensure that the output volume density is nonnegative) and a 256-dimensional feature vector. This feature vector is
concatenated with the positional encoding of the input viewing direction v(d), and is processed by an additional fully-connected ReLU
layer with 128 channels. A final layer (with a sigmoid activation) outputs the emitted RGB radiance at position @, as viewed by a ray with
direction d, given the current 3D state representation S;.
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