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Fig. 1: We present a simple framework for learning policies for reorienting a large number of objects in scenarios where the (1)
hand faces upward, (2) hand faces downward with a table below the hand and (3) without the support of the table. The object
orientation in the rightmost image in each row shows the goal orientation.

Abstract—In-hand object reorientation has been a challenging
problem in robotics due to high dimensional actuation space and
the frequent change in contact state between the fingers and
the objects. We present a simple model-free framework that can
learn to reorient objects with both the hand facing upwards and
downwards. We demonstrate the capability of reorienting over
2000 geometrically different objects in both cases. The learned
policies show strong zero-shot transfer performance on new
objects. We provide evidence that these policies are amenable to
real-world operation by distilling them to use observations easily
available in the real world. The videos of the learned policies are
available at: https://sites.google.com/view/in-hand-reorientation.

I. INTRODUCTION

A common maneuver in many tasks of daily living is to pick
an object, reorient it in hand and then either place it or use it
as a tool. Consider three simplified variants of this maneuver
in Figure 1. The first task shown in the top row requires an
upward-facing multi-finger hand to manipulate an arbitrary
object in a random orientation to a goal configuration. The
next two rows show the second and third tasks where the hand
is facing downward and is required to reorient the object either
using the table as a support or without the aid of any support
surface respectively. These two tasks are harder because the
object is in an intrinsically unstable configuration owing to
the downward gravitational force and lack of support from the

palm. Additional challenges in making such maneuvers with a
multi-finger robotic hand stem from the control space being
high-dimensional and reasoning about multiple transitions in
the contact state between the finger and the object. Due to
its practical utility and several unsolved issues, in-hand object
reorientation remains an active area of research.

Past work has tackled the in-hand reorientation problem
via several approaches: (i) The use of analytical models with
powerful trajectory optimization methods [12, 2, 8]. While these
methods demonstrated remarkable performance, the results
were largely in simulation with simple object geometries and
required detailed knowledge of the object model and physical
parameters. As such, it remains unclear how to scale these
methods to real-world and generalize to new objects. Another
line of work has employed (ii) model-based reinforcement
learning [10, 15]; or (iii) model-free reinforcement learning
with [7, 9, 18, 17] and without expert demonstrations [14,
1, 16, 23]. While some of these works demonstrated learned
skills on the real robots, they required substantial engineering
and additional apparatus (e.g., motion capture system) to infer
the object state, and the learned policies did not generalize
to diverse objects. Furthermore, nearly all of these methods
operate in a simplified setting where the hand is only allowed
to face upward (with pick-and-place being an exception, but
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pick-and-place doesn’t incorporate any in-hand manipulation).
In this paper, our goal is to study the object reorientation

problem with a multi-finger hand in its general form. We
desire (a) manipulation with hand facing upward or downward;
(b) the skill of using external surfaces to aid manipulation;
(c) the ability to reorient objects of novel shapes to arbitrary
orientations; (d) operation from sensory data that can be easily
obtained in the real world such as RGBD images and joint
positions of the hand. While some of these aspects have been
individually demonstrated in prior work, we are unaware of any
published method that realizes all four. Our main contribution is
building a simple framework that can achieve these desiderata.
We experimentally test this framework with a simulated Shadow
hand. We also provide evidence indicating that the learned
policies can be transferred to the real world in the future.

II. METHOD

We adopt the teacher-student training paradigm. First, we
use PPO [20] to train a teacher policy with privileged full
state information including joint positions/velocities, fingertip
pose/velocities and object pose/velocities. Next, we distill
the teacher policy into student policies that only use the
sensory data that can be readily acquired in the real world
via Dagger [19]. We designed two student policies depending
on the type of sensory data available. Our first student policy
takes as input the joint positions of the hand, object pose, goal
orientation, and the action command at the previous time step
at−1, and outputs control command. Our second student policy
takes as input the point cloud of the manipulation scene, the
joint positions and at−1. To process the point cloud data, we
extend the IMPALA policy architecture [5] for processing RGB
images to process colored point cloud data using 3D sparse
convolution. We use Minkowski Engine [4], a PyTorch library
for sparse tensors, to design a 3D version of IMPALA-Net
with sparse convolutions (Sparse3D-IMPALA-Net) (see Fig. 2).
The point cloud Wt is processed by a series of CNN residual
modules and projected into an embedding vector. qt and at−1

are concatenated together and projected into an embedding
vector via an MLP. Both embedding vectors from Wt and
(qt, at−1) are concatenated and passed through a recurrent
network to output the action at. While the procedure described
above works well for manipulation with the hand facing
upwards and downwards with a table as a support, we find
that in the case of the hand facing downward without a table,
a good initialization of object pose such as the one obtained
by an object lifting policy is key for successful reorientation,
and the proposed gravity curriculum substantially improves
performance.

Even though we do not test our policies on a real robot, we
train and evaluate policies with domain randomization [22]
to provide evidence that our work has the potential to be
transferred to a real robotics system in the future. We randomize
the object mass, friction coefficient, joint damping and add
noise to the state observation st and the action at. More details
about domain randomization are provided in Table I.

TABLE I: Dynamics Randomization and Noise
Parameter Range Parameter Range Parameter Range

state observation +U(−0.001, 0.001) action +N (0, 0.01) joint stiffness ×E(0.75, 1.5)
object mass ×U(0.5, 1.5) joint lower range +N (0, 0.01) tendon damping ×E(0.3, 3.0)

object static friction ×U(0.7, 1.3) joint upper range +N (0, 0.01) tendon stiffness ×E(0.75, 1.5)
finger static friction ×U(0.7, 1.3) joint damping ×E(0.3, 3.0)
N (µ, σ): Gaussian distribution with mean µ and standard deviation σ.
U(a, b): uniform distribution between a and b. E(a, b) = expU(log(a),log(b)).
+: the sampled value is added to the original value of the variable. ×: the original value is scaled by the sampled value.

III. EXPERIMENTAL SETUP

We use the simulated Shadow Hand [21] in NVIDIA Isaac
Gym [11]. In our experiments, we assume the base of the hand
to be fixed. Twenty joints are actuated by agonist–antagonist
tendons and the remaining four joints are under-actuated.
We use the EGAD dataset [13] and YCB dataset [3] that
contain objects with diverse shapes for in-hand manipulation
experiments. We create 5 variants for each object mesh by
randomly scaling the mesh. Mass is randomly sampled from
[0.05, 0.15]kg for every object. In total, we use 11410 EGAD
object meshes and 390 YCB object meshes for training. The
initial and goal orientations of the objects are both randomly
sampled from the full SO(3) space during both the training
and testing. We consider a policy rollout to be a success if the
angle difference ∆θ between the object’s current and the goal
orientation is smaller than a threshold value θ̄, i.e.,∆θ ≤ θ̄
(θ̄ = 0.1). For vision experiments, θ̄ = 0.2 and we also check
the Chamfer distance [6] dC between the object’s point cloud
sampled from its CAD mesh rotated to the current orientation
and goal orientation respectively to handle the object symmetry
issue. If dC is less than a threshold value d̄C = 0.01, the
episode is also considered a success. All the experiments in
the paper were run on at most 2 GPUs with a 32GB memory.

IV. RESULTS

A. Reorient objects with the hand facing upward

We tried using a simple MLP as well as a simple RNN
policy architecture for our teacher policy without using any
object shape information. Both architectures work well. On
the entire EGAD dataset, both policies are able to get a
success rate greater than 90%. On the YCB dataset, the success
rates for both policies are over 70% (see Table II). This
result is surprising because intuitively, one would assume that
information about the object shape is important for in-hand
reorientation. The visualization of the policy rollout reveals
that the agent throws the object in the air with a spinning
motion and catches it at the precise time when the object’s
orientation matches the goal orientation. Throwing the object
with a spin is a dexterous spin that automatically emerges!
Even though we trained policies on only one dataset (either
EGAD or YCB), we are able to get strong zero-shot transfer
performance on the other untrained dataset. The RNN policy
trained on EGAD gets a success rate of 68.82% on the YCB
dataset, while the policy trained on the YCB dataset gets a
success rate of 96.41% on the EGAD dataset. We are also
able to distill our teacher policy to student policies that take
as input the joint positions, object pose, goal orientation, and
at−1 without a performance drop in the success rates. We also
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Fig. 2: Visual policy architecture. MK stands for Minkowski Engine. qt is the joint positions and at is the action at time step t.

(a) (b) (c) (d)

Fig. 3: Examples of initial poses of the hand and object. (a):
hand faces upward. (b), (c), (d): hand faces downward. (b):
both the hand and the object are initialized with random poses .
c: there is a table below the hand. (d): the hand and the object
are initialized from the lifted poses.

trained our student policies with domain randomization that
randomize the simulator dynamics. Our student policies are
able to get a success rate of 80.29% on the EGAD dataset and
65.86% on the YCB dataset with randomized dynamics.

TABLE II: Success rates (%) of policies tested on different
dynamics distribution. θ̄ = 0.1rad. DR stands for domain
randomization and observation/action noise. X→Y: distill
policy X into policy Y.

1 2 3

Dataset State Policy Train without DR Train with DR
Test without DR Test with DR Test with DR

EGAD

Full state MLP 92.55± 1.3 78.24± 2.4 91.92± 0.4
RNN 95.95± 0.8 84.27± 1.0 88.04± 0.6

Reduced state
MLP→MLP 55.55± 0.2 25.09± 3.0 23.77± 1.8
MLP→RNN 85.32± 1.2 68.31± 2.6 81.05± 1.2
RNN→RNN 91.96± 1.5 78.30± 1.2 80.29± 0.9

YCB

Full state MLP 73.40± 0.2 54.57± 0.6 66.00± 2.7
RNN 80.40± 1.6 65.16± 1.0 72.34± 0.9

Reduced state
MLP→MLP 34.08± 0.9 12.08± 0.4 5.41± 0.3
MLP→RNN 69.30± 0.8 47.38± 0.6 53.07± 0.9
RNN→RNN 81.04± 0.5 64.93± 0.2 65.86± 0.7

B. Reorient objects with the hand facing downward

1) Reorient objects on a table (Fig. 3c): To tackle the
problem of reorienting objects with the hand facing downward,
we start with a simpler version of the task where there is a
table below the hand. The success rate for the EGAD dataset
with an MLP policy using full state information is 95.3%. The
success rate for the YCB dataset is 81.59%.

2) Reorient objects in air with hand facing downward
(Fig. 3d): We experimentally verify that even in this case,
the policies achieve a reasonably high success rate without any
knowledge of object shape.

A good pose initialization is what you need: We first
train an object-lifting policy to lift objects from the table,
collect the ending state (joint positions, object position and
orientation) in each successful lifting rollout episode, and reset
the hand and objects to these states (velocities are all 0) for
the pose initialization in training the reorientation policy. In
every reset during the reorientation policy training, ending
states are randomly sampled and used as the initial pose of
the fingers and objects. With a good pose initialization, our
teacher RNN policy trained on EGAD dataset gets a success
rate of more than 80% while the teacher RNN policy trained
on YCB dataset gets a success rate greater than 50%.

Improving performance using gravity curriculum: We
also found that building a gravity curriculum boosts policy
performance. Our gravity curriculum is constructed as follows:
we start the training with g = 1 m/s2, then we gradually
decrease g in a step-wise fashion if the evaluation success rate
(w) is above a threshold value (w̄) until g = −9.81 m/s2. By
applying the gravity curriculum, our expert RNN policy gets
18% improvement in the success rate on the YCB training
dataset.

C. Reorient objects with RGBD sensors

We also investigate whether we can train a student policy
that directly uses vision as input to reorient objects with the
hand facing upward. As vision-based experiments require much
more compute resources, we train one vision policy for each
object individually on six YCB objects. We use the expert
MLP policy trained in Section IV-A to supervise the vision
policy.

We also trained our vision policies with noise added to the
point cloud input. We applied four types of transformations on
the point cloud:



TABLE III: Success rates (%) of policies trained with hand
facing downward and to reorient objects in the air. Due to
the large number of environment steps required in this setup,
we fine-tune the model trained without DR with randomized
dynamics instead of training models with DR from scratch.

1 2 3

Dataset State Policy
Train without DR Finetune with DR

Test without DR Test with DR Test with DR

EGAD
Full state

MLP 84.29± 0.9 38.42± 1.5 71.44± 1.3

RNN 82.27± 3.3 36.55± 1.4 67.44± 2.1

Reduced state
MLP→RNN 77.05± 1.6 29.22± 2.6 59.23± 2.3

RNN→RNN 74.10± 2.3 37.01± 1.5 62.64± 2.9

YCB

Full state
MLP 58.95± 2.0 26.04± 1.9 44.84± 1.3

RNN 52.81± 1.7 26.22± 1.0 40.44± 1.5

RNN + g-curr 74.74± 1.2 25.56± 2.9 54.24± 1.4

Reduced state
MLP→RNN 46.76± 2.5 25.49± 1.4 34.14± 1.3

RNN→RNN 45.22± 2.1 24.45± 1.2 31.63± 1.6

RNN + g-curr→ RNN 67.33± 1.9 19.77± 2.8 48.58± 2.3

Object Success rate (%)
025_mug 89.67± 1.2

065-d_cups 68.32± 1.9

072-b_toy_airplane 84.52± 1.4

073-a_lego_duplo 58.16± 3.1

073-c_lego_duplo 50.21± 3.7

073-e_lego_duplo 66.57± 3.1

TABLE IV: Vision policy success rate

• RandomTrans: Translate the point cloud by [∆x,∆y,∆z]
where ∆x,∆y,∆z are all uniformly sampled from
[−0.04, 0.04].

• JitterPoints: Randomly sample 10% of the points. For each
sampled point i, jitter its coordinate by [∆xi,∆yi,∆zi]
where ∆xi,∆yi,∆zi are all sampled from a Normal distri-
bution N (0, 0.01) (truncated at −0.015m and 0.015m).

• RandomDropout: Randomly dropout points with a dropout
ratio uniformly sampled from [0, 0.4].

• JitterColor: Jitter the color of points with the following 3
transformations: (1) jitter the brightness and rgb values, (2)
convert the color of 30% of the points into gray, (3) jitter the
color contrast. Each of this transformation can be applied
independently with a probability of 30% if JitterColor is
applied.
Each of these four transformations is applied independently

with a probability of 40% for each point cloud at every time
step. Table IV shows the success rates of the vision policies
trained with the aforementioned data augmentations until policy
convergence and tested with the same data augmentations. We
found that adding the data augmentation in training helps
improve the data efficiency of the vision policy learning even
though the final performance might be a bit lower. Table IV
shows that reorienting the non-symmetric objects including the
toy and the mug has high success rates (greater than 80%).
While training the policy for symmetric objects is much harder,
using dC as an episode termination criterion enables the policies
to achieve a success rate greater than 50%.

V. DISCUSSION

Our results show that model-free RL with simple deep
learning architectures can be used to train policies to reorient a

large set of geometrically diverse objects. Further for learning
with hand facing downwards, we found that a good pose
initialization obtained from a lifting policy was necessary,
and the gravity curriculum substantially improved performance.
The agent also learns to use an external surface (i.e., the table).
The most surprising observation is that information about shape
is not required despite the fact that we train a single policy to
manipulate multiple objects. Perhaps in hindsight, it is not as
surprising – after all, humans can close their eyes and easily
manipulate novel objects into a specific orientation. However,
even in this scenario, shape can be implicitly inferred using
touch signals. As such, our work can serve a strong baseline
for future in-hand object reorientation works that incorporate
object shape information as part of the observation space to
improve performance.

It should be noted that successful training of the teacher
policy critically relied on shape information being expendable
but required privileged information – a major obstacle in
the real-world deployment. While we were not able to train
reorientation policies from scratch using visual inputs, we show
that we can distill this policy to operate from RGBD point
clouds and joint positions that are readily available in the real
world. While we only present results in simulation, we also
provide evidence that our policies can be transferred to the real
world. The experiments with domain randomization indicate
that learned policies can work with noisy inputs.
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