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Abstract—Pose estimation is a basic module in many robot
manipulation pipelines. Estimating the pose of objects in the
environment can be useful for grasping, motion planning, or
manipulation. However, current state-of-the-art methods for
pose estimation either rely on large annotated training sets
or simulated data. Further, the long training times for these
methods prohibit quick interaction with novel objects. To address
these issues, we introduce a novel method for zero-shot object
pose estimation in clutter. Our approach uses a hypothesis
generation and scoring framework, with a focus on learning a
scoring function that generalizes to objects not used for training.
We achieve zero-shot generalization by rating hypotheses as a
function of unordered point differences. We evaluate our method
on challenging datasets with both textured and untextured objects
in cluttered scenes and demonstrate that our method significantly
outperforms previous methods on this task. We also demonstrate
how our system can be used by quickly scanning and building
a model of a novel object, which can immediately be used
by our method for pose estimation. Our work allows users
to estimate the pose of novel objects without requiring any
retraining. Additional information can be found on our website
https://bokorn.github.io/zephyr/

I. INTRODUCTION

6D pose describes the position and orientation of an object,
defined in a reference frame relative to a predefined model
of the object. An object’s 6D pose fully describes the state
of a static rigid object and, as such, is commonly used as
a representation for planning [6, 44]. A robot can use an
estimate of an object’s pose to perform complex manipulation
interactions with the object [19, 34, 11, 5].

Current state-of-the-art methods for object pose estimation
train a new model for each object they are being evaluated
on [40, 38, 2]. This requires a large amount of annotated
training data, either produced by capturing and annotating
large datasets [40, 38] or through rendering the object in
synthetically generated scenes [35, 7, 33]. Regardless of
how this data is obtained, training new networks has a time
and space cost, which makes the algorithm not scale well
in cases where robots need to interact with many different
types of objects. One approach to mitigate these issues is
to use a non-learned geometry-based method [8, 37]. These
methods, however, do not typically capture visual texture well,
and they rely on hard-coded, rather than learned, invariances,
which limits the potential accuracy of the system (based on
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Fig. 1: Pose hypotheses scored using Zero-shot Pose Hypothe-
sis Rating on novel drill object, reconstructed at test time. The
highest scoring pose is rendered in color. Poses are outlined
in color corresponding to score, with highly-rated poses in red
and to lower ones in blue.

our experiments in Section IV-D). A few recent learning-
based approaches have attempted to perform zero-shot object
pose estimation [28, 32] but these methods require instance
segmentation masks to be provided as input, which limits their
use in a “zero-shot” system, as such masks are typically trained
per-object.

We seek to remove these limitations by developing a novel
learning-based method for zero-shot object pose estimation
that can handle both textured and untextured objects in clut-
tered scenes and does not require object masks as input.
Our method uses the paradigm of pose hypothesis generation
and evaluation: given a scene, a large number of candidate
poses consistent with the observation are generated. The
fitness of each hypothesis is then evaluated and the best-fit
candidate is selected. Such an approach requires the hypothesis
rating function to give appropriate weight to the features that
most correlate with the correct pose. The variation between
sensor data and the object model, caused by sensor noise
or lighting changes, as well as partial occlusions, can make
designing this scoring function challenging. Past approaches
to hypothesis scoring have used voting over hypotheses or
feature matching [10, 3, 8]; in contrast, this paper proposes a
scoring function that learns to compare the observed images
and rendered model points. Our learned scoring function
demonstrates a significant improvement on zero-shot object
pose estimation over a wide set of objects and environmental
variations.

The key insight of our method is to use a learned scoring
function that compares the sensor observation to a sparse
rendering of each candidate pose hypothesis. This scoring
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function receives as input an unordered set of point differences,
shown in Fig. 2, which we show is crucial to perform zero-
shot generalization to novel objects not seen in the training
set. Our method is trained over a disparate set of objects and
then evaluated on novel objects not included in the training
set.

We demonstrate that our Zero-shot Pose Hypothesis Rat-
ing method (ZePHyR) works on objects in clutter without
requiring object masks as input, unlike past zero-shot meth-
ods [32, 28]. ZePHyR handles both untextured objects as well
as objects with significant visual texture, not seen at training
time. Therefore, ZePHyR achieves the goal of zero-shot object
pose estimation mentioned earlier:

• We require no new human annotations or large-scale
synthetic data generation to interact with novel objects.

• We require no retraining for novel objects.
• ZePHyR uses only a single set of network weights,

rather than requiring new weights for each unique object,
reducing the memory constraints.

We evaluate our method on YCB-Video and LineMOD-
Occlusion, two challenging pose estimation datasets. Our
method achieves state-of-the-art results over previous zero-
shot pose estimation methods.

II. RELATED WORK

A. Non-learned Zero-shot Pose Estimation

Zero-shot pose estimation is the task of estimating the pose
of objects not seen at training time. Non-learning based ap-
proaches [1, 36, 13, 14, 26, 22, 25, 12, 43] are inherently zero-
shot, leveraging robust features and the available object model
at test time. Point Pair Features (PPF) [37, 8, 9, 18, 9, 15] use
pairs of oriented points to generate geometrically consistent
pose hypotheses and select the best hypothesis using voting
and clustering. These are the top-performing zero-shot meth-
ods on the BOP leader board [16], when averaged over all
datasets, but struggle to compete with deep learned methods
on the highly textured YCB dataset due to the methods being
exclusively based on depth.

B. Learned Zero-shot Object Pose Estimation

Several learned methods solve the zero-shot pose estimation
problem using class-based pose estimation [24, 39] as opposed
to instance-based pose estimation. These methods learn a pose
estimator capable of generalizing among objects in the given
class, but such methods are not intended to generalize to novel
classes. While this is a step in the direction of zero-shot pose
estimation, it still requires training a new network for each
class.

A few recent zero-shot methods use a learned representation
of the object in their pose estimation pipeline [41, 32, 28].
While these methods have been shown to generalize across ob-
jects, they require a bounding box for the target object, which
is obtained using an object-specific learned detector (and hence
not a zero-shot system) or the ground-truth bounding box. This
requirement is avoided in the MOPED dataset [28], as there is
only a single object in the scene, which greatly simplifies the

task of estimating the object mask [42]. For the LineMOD-
Occlusion dataset, ground truth object masks are used [28].
Our method does not require such bounding boxes or masks
as input, making it truly zero-shot.

III. METHOD
A. Overview

The primary objective of this work is zero-shot object
pose estimation in clutter. To achieve this, we train our pose
estimation method on one set of objects and then evaluate on
a set of novel objects, without requiring any re-training.

An overview of our method is shown in Figure 2. Given a
set of 6D pose hypotheses, we first project each hypothesis
into the scene. Our method learns to score each hypothesis
by comparing differences in the projected object model point
cloud to the RGB-D observation. For each projected model
point, we extract the color and geometry information from
both the model and the observation and compute the local
differences of the extracted information. This yields a set of
point-differences, one for each projected model point. Each
element in this set encodes the local alignment between the
model and the observation with respect to color and geometry.
We adopt a point-based network [30, 31] to analyze this
unordered set of point-differences and regress to an overall
score for each pose hypothesis. Focusing on differences as
well as adopting a point-based neighborhood structure helps us
avoid overfitting to object-specific properties from the training
set and allows us to generalize to unseen objects at test time.

In this work, our primary focus is the learned scoring
function and we use a combination of Point Pair Features [8]
and SIFT features [23] to generate our pose hypothesis set.

B. Learned Scoring Function

The main goal of our method is to score pose hypotheses
by projecting them into the observed scene and learning to
compare their local geometric and color differences. Suppose
that we have a set of 6D pose hypotheses H = {hi}mi=1

that we wish to evaluate. We represent the object as a point
cloud M = {xj}nj=1, sampled from the provided object
mesh model, or obtained from a 3D reconstruction pipeline.
Each point contains both geometric (depth and normal) and
color information drawn from its local region on the object.
Similarly the observation image I contains geometric and
color values from the observation. To evaluate hypothesis hi,
we project each object point xj onto the observation’s image
plane, using the known camera parameters. This projection
gives a point at image coordinates yij with transformed point
values x̃ij (the point depth and normal vector are transformed;
the color of the projected point is unchanged). For each pose
hypothesis, the difference between the projected values, x̃ij ,
and their corresponding image values, I(yij), is computed
according to a simple distance function, dij = f(x̃ij , I(yij))
(see supplementary material for details).

The set Di = {dij}mj=1 represents an unordered set of point
differences for pose hypothesis hi, each of which is associated
with a given point xj in the model and a location yij in the
observation image. We train a deep neural network gθ(Di)
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Fig. 2: System Pipeline. Our method first projects the sampled model points M onto the observation I according to a pose
hypothesis hi. Then Di are extracted as the point-wise differences between the observation and the projected model points,
describing the alignment of the pose hypothesis at each projected point. A network takes in Di and regresses to a score si for
each pose hi which evaluates how well the pose matches the observation.

with parameters θ to analyze this difference set and regress to
a pose fitness score, si. Our learned function can intelligently
combine point differences on multiple parts of the object to
robustly estimate the most likely pose hypothesis.

C. Loss Function

To train this hypothesis scoring function, we adopt the
probabilistic selection loss proposed by DSAC [3], as it
directly optimizes the expected pose error when hypotheses are
sampled according to the predicted scores. For each pose hy-
potheses hi with corresponding true pose error εi, we compute
the expected pose error of sampling according to the softmax
distribution induced by si, L =

∑m
i=1 softmax(si)εi.

In our experiment, εi is defined as the log of the average
point distance (ADD) for non-symmetric objects and its sym-
metric analog (ADD-S) for symmetric ones [40]. Empirically,
we find that the log of this error better dampens the effects of
outliers. At test time, the highest-scoring pose hypothesis is
selected. The inference pipeline is described in Algorithm 1.

Algorithm 1: Hypothesis Scoring Pose Estimation

Compute initial pose hypothesis set H = {hi}mi=1;
foreach hi in H do

Project all model points according to hi onto the
image plane to get projected model points x̃ij at
projected image coordinates yij ;

Get observation points I(yij);
Compute point differences di = f(x̃ij , I(yij));
Score point-differences si = gθ({dij}mj=1);

end
Return hypothesis hi∗ , where i∗ = argmaxi si;

D. Implementation details

Implementation details about hypothesis generation, net-
work input construction and network structure can be found
in the supplementary material.

IV. EXPERIMENTS
A. Datasets

We evaluated our method on two of the most popular
datasets in the BOP Challenge [16], the YCB-Video (YCB-V)
dataset [40] and the LineMOD-Occlusion (LM-O) dataset [2].
In these experiments, we follow the evaluation protocol set
up by the BOP Challenge, with the additional constraint that
our method is not trained on the objects it is tested on. This
allows us to test our ability to perform zero-shot generalization
to novel objects.

YCB-Video dataset (YCB-V) [40] contains 92 RGB-D
video sequences of 21 YCB objects [4] of varying shape
and texture, annotated with 6D poses. This a particularly
challenging dataset for object pose estimation due to its
varying lighting conditions, occlusions, and sensor noise. We
follow the dataset split in [40], and for the evaluation, we adopt
the BOP testing set [16], where 75 images with higher-quality
ground-truth poses from each of 12 test videos are used. To
demonstrate the generalization ability, one half of the objects
are used for training, and the other half are used for testing.
Then, a second network is trained with train and test objects
exchanged. When evaluating on YCB-V, we use hypotheses
generated by both PPF and SIFT matching to handle the high
degree of visual texture. We also adopt an ICP refinement
step [1] for post-processing.

LineMOD-Occlusion dataset (LM-O) [2] adopted a sin-
gle scene from the test set of the larger LineMOD (LM)
dataset [14] and provides ground-truth 6D pose annotations
for 8 low-textured objects. For training, we used the PBR-
BlenderProc4BOP [17] training images provided by the BOP
challenge. Our model is only trained on synthetic images of
the 7 objects that are in the LM dataset but not in the LM-O
dataset; we then evaluate on the LM-O objects, which were not
seen at training time. When evaluating on LM-O, we only use
hypotheses generated by PPF; we find that SIFT hypotheses
are ineffective on this dataset since the objects do not contain
much visual texture.
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Fig. 3: Qualitative results on image from YCB-V dataset showing the improved accuracy of our method.

Zero-Shot Methods Object Specific Methods

Drost [8] Vidal [37] ZePHyR + CosyPose [20] Pix2Pose [29]Drost (Ours)
YCB-V 0.344 0.450 0.516 0.861 0.675
LM-O 0.527 0.581 0.598 0.714 0.588

TABLE I: AR scores for methods of zero-shot and object specific pose estimation on object pose datasets (higher is better).

B. Metrics

As suggested by the BOP challenge, we report the average
recall (AR) scores for the following metrics: Visible Surface
Discrepancy (VSD), Maximum Symmetry-Aware Surface Dis-
tance (MSSD), and Maximum Symmetry-Aware Projection
Distance (MSPD). For a detailed formulation of each metric,
please refer to the supplementary material and [16].

C. Baselines

We compare our method to both zero-shot and object-
specific methods. As we are most concerned with our per-
formance as compared to other zero-shot methods, we com-
pare to two variants of Point Pair Features, Drost [8] and
Vidal [37]. An implementation of Drost’s PPF [27] is used
as the hypothesis generation algorithm in our work. Vidal had
until recently been the top-performing method in the BOP
challenge, and demonstrates the peak performance of PPF-only
systems (although their code is not available). In addition to
the zero-shot baselines, we report the current state of the art in
object-specific methods as CosyPose [20] and Pix2Pose [29].
Both of these methods train a network on annotated instances
of the test objects and have weights specifically associated
with each object. While we are not attempting to match
the performance of these systems, we report their results to
illustrate the still remaining gap between zero-shot and object-
specific methods.

D. Zero-shot Pose Estimation Results

In Table I, we find that our method outperforms all zero-shot
methods, significantly improving over our initial pose hypothe-
ses produced by Drost and outperforming the best PPF-only
solution in Vidal [37]. We see the largest improvement on the
YCB dataset, where PPF is unable to fully resolve the pose of
the geometrically symmetric but textually asymmetric objects,
seen in failure to match the cylindrical objects in Figure 3.
Our method is able to leverage both color and geometry,
selecting the most accurate pose hypothesis. Additionally,
we find our method to be comparable to the object-specific

results produced by Pix2Pose [29]. While DeepIM [21] is
a local refinement method, and not directly comparable to
ZePHyR, we do evaluate its performance based on PPF in
the supplementary material.

E. Input Ablations

To determine the relative importance of each of our input
channels, we retrain our networks without each dimension.
We show results on YCB in Table II, training on the “Object
Set 1” and testing on “Object Set 2”. Additionally, this table
shows the effects of concatenating observation and model
inputs (“Model without Diff”), as opposed to computing
their difference (as in our method). Unsurprisingly, the color
information has the greatest effect on the accuracy of our
system, as it is the most orthogonal to the information used
by our PPF hypotheses.

Model without
Color Depth Normal Coords Diff

Unseen Objects -18% -15% -7.1% -8.9% -6.3%(Zero-shot)
Seen Objects -24% -4.2% 0.8% 1.1% 2.1%(Training)

TABLE II: Percent change in AR scores on YCB Video dataset
caused by removal of each input to our method.

V. CONCLUSION

We propose a method for zero-shot object pose estimation,
focusing on pose hypothesis scoring. By extracting point
differences between the projected object points and the ob-
servation and imposing a loose neighborhood structure on
these points, we learn a pose scoring function that generalizes
well to novel objects. On the challenging YCB-Video and
LineMOD-Occlusion datasets, our method achieves state-of-
the-art performance for zero-shot object pose estimation in
clutter, evaluated on both textured and untextured objects. We
hope that our method paves the way for roboticists to obtain
accurate pose estimates for novel objects without needing
additional training or data annotation.
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