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Abstract—We propose to solve quadrupedal locomotion tasks
using Reinforcement Learning (RL) with a Transformer-based
model that learns to combine proprioceptive information and
high-dimensional depth sensor inputs. While learning-based loco-
motion has made great advances using RL, most methods still rely
on domain randomization for training blind agents that general-
ize to challenging terrains. Our key insight is that proprioceptive
states only offer contact measurements for immediate reaction,
whereas an agent equipped with visual sensory observations can
learn to proactively maneuver environments with obstacles by
anticipating changes in the environment many steps ahead. In this
paper, we introduce LocoTransformer, an end-to-end RL method
for quadrupedal locomotion that leverages a Transformer-based
model for fusing proprioceptive states and visual observations.
We evaluate our method in challenging simulated environments
with different obstacles. We show that our method obtains
significant improvements over policies with only proprioceptive
state inputs, and that Transformer-based models further improve
generalization across environments. Our project page with videos
is at https://LocoTransformer.github.io/.

I. INTRODUCTION
Legged locomotion is one of the core problems in robotics

research. It expands the reach of robots and enables them to
solve a wide range of tasks, from daily life delivery to planetary
exploration in challenging, uneven terrain [15], [2]. Recently,
with the success of deep Reinforcement Learning (RL) in navi-
gation [54], [26], [81], [41] and robotic manipulation tasks [73],
[39], we have also witnessed tremendous improvement of
locomotion skills for quadruped robots, allowing them to walk
on uneven terrain [80], [79], and even generalize to real world
environments with mud, snow, and running water [44].

While these results are encouraging, most RL methods learn
a robust controller for blind quadrupedal locomotion, using
only the proprioceptive measurements. Lee et al. [44] train a
robust RL quadrupedal locomotion policy that can be applied to
challenging terrains with domain randomization and large-scale
training in simulation. However, is domain randomization with
blind agents sufficient for general legged locomotion?

By studying eye movement during human locomotion,
Matthis et al. [52] show that humans rely heavily on eye-
body coordination when walking, and the gaze depends on the
environment, e.g. whether humans walk in flat or rough terrain.
This finding motivates the use of visual input to improve
quadrupedal locomotion in complicate environment. While
handling uneven terrain is still possible without vision, a blind
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agent is unable to e.g. consistently avoid obstacles in Figure 1.
To maneuver around such obstacles, the agent needs to perceive
the obstacles at a distance and dynamically make adjustments
to its trajectory to avoid any collision, visual observations can
therefore play an important role in improving locomotion skills.

In this paper, we propose to combine proprioceptive states
and forward-facing depth camera inputs with a cross-modal
Transformer for learning RL locomotion policies. Our key
insight is that proprioceptive states (i.e. robot pose, Inertial
Measurement Unit (IMU) readings, and local joint rotations)
give a precise measurement of the current interaction between
the agent and the ground for immediate reaction, while visual
inputs from a depth sensor can help the agent plan to maneuver
large obstacles in its path. Inspired by the recent development of
multi-modal reasoning with Transformers [77], [75], [22], we
propose to fuse two streams of inputs, namely proprioceptive
states and depth images, for RL using Transformers, which
enables the model to reason using complementary information
from both modalities. Transformers also offer a mechanism
for agents to attend to certain visual regions (e.g. objects) that
are critical for its short-term decision making, which may in
turn lead to a more generalizable and interpretable policy.

Our proposed Transformer-based model for locomotion,
LocoTransformer, consists of the following two encoders:
an MLP for proprioceptive states, and a ConvNet for depth
image inputs. We obtain a feature embedding from the
proprioceptive states and multiple image patch embeddings
from the depth images, which are used jointly as token inputs
for the Transformer encoders. Features for both modalities
are then fused with information propagation among all the
tokens using self-attention. Finally, we combine both features
for policy action prediction. The resulting model is trained
end-to-end directly using rewards, without hierarchical RL [59],
[40], [30], [37] nor pre-defined controllers [14], [20].

We evaluate our proposed method on challenging simulated
environments as shown in Figure 1, including tasks such as
maneuvering around obstacles of different sizes and shapes.
We show that jointly learning policies with both proprioceptive
states and vision significantly improves locomotion in challeng-
ing environments, and policies further benefit from adopting our
cross-modal Transformer. We also show that LocoTransformer
generalizes much better to unseen environments. Lastly, we
qualitatively show our method learns to anticipate changes in
the environment using vision as guidance.

https://LocoTransformer.github.io/
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Fig. 1: Overview of environments. For each sample, left image shows the environment and right image shows the corresponding observation.
The agent is tasked to move forward while avoiding black obstacles and collecting red spheres. Environments are randomized in each episode.

II. RELATED WORK

Learning Legged Locomotion. Developing legged lo-
comotion controllers has been a long standing problem in
robotics [55], [63], [74], [24], [83], [4]. While encouraging
results have been achieved using Model Predictive Control
(MPC) and trajectory optimization [23], [9], [17], [8], [18],
[25], [3], these methods require in-depth knowledge of the
environment and substantial efforts in manual parameter tuning,
which makes these methods challenging to apply to complex
environments. Alternatively, model-free RL can learn general
policies for tasks with challenging terrain [42], [84], [51], [60],
[61], [72], [34], [44], [80], [35], [37], [79]. Xie et al. [80] use
dynamics randomization to generalize RL locomotion policy
in different environments, and Peng et al. [61] use animal
videos to provide demonstrations for imitation learning. Most
approaches currently rely only on proprioceptive states without
other sensory signals.

Vision-based Reinforcement Learning. To generalize RL
to real-world applications beyond state inputs, a lot of effort has
been made in RL with visual inputs [64], [36], [46], [47], [58],
[39], [21], [50], [82], [43], [67], [68], [66]. Srinivas et al. [67]
apply contrastive self-supervised representation learning [29]
together with the RL objective to improve the sample efficiency
in vision-based RL. Hansen et al. [28] further extend the joint
representation learning and RL for better generalization to
out-of-distribution environments. Instead of using a single
modality input in RL, researchers have also looked into
combining multi-modalities for manipulation tasks [45], [6]
and locomotion control [30], [53], [20], [38]. Escontrela et
al. [20] combine proprioceptive states and LiDAR inputs for
learning quadrupedal locomotion using RL using MLPs. Jain
et al. [38] use Hierarchical RL (HRL) for locomotion, which
learns high-level policies under visual guidance and low-level
motor control policies with IMU inputs. Different from previous
work, we provide a simple yet effective method to combine
proprioceptive states and depth image inputs with a Transformer
model, which allows end-to-end training without HRL.

Transformers and Multi-modal Learning. The Trans-
former model has been widely applied in the fields of
language processing [77], [16], [5] and visual recognition and
synthesis [78], [57], [12], [19], [7], [10]. Besides achieving
impressive performance in a variety of language and vision
tasks, the Transformer also provides an effective mechanism for
multi-modal reasoning by taking different modality inputs as
tokens for self-attention [69], [71], [48], [70], [11], [49], [62],
[33], [32], [1], [31]. For example, Sun et al. [70] propose to use
a Transformer to jointly model video frames and their corre-
sponding captions from instructional videos for representation
learning. Going beyond language and vision, we propose to

utilize cross-modal Transformers to fuse proprioceptive states
and visual inputs. To our knowledge, this is the first work
using cross-modal Transformers for locomotion.

III. METHOD

We propose to incorporate proprioceptive and visual in-
formation for locomotion tasks using a novel Transformer
model, LocoTransformer. Figure 2 provides an overview of
our architecture. Our model consists of two components: (i)
separate modality encoders for proprioceptive and visual inputs
that project both modalities into a latent feature space; (ii) a
shared transformer encoder performing spatial attention over
visual tokens, and cross-modality attention over proprioceptive
and visual features to predict the actions and values.
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Fig. 2: Architectural overview. We process proprioceptive states
with a MLP and depth image inputs with a ConvNet. We take
proprioceptive feature as a single token, split the spatial visual
feature representation into N × N tokens and feed all tokens into
our Transformer encoder. The output of the Transformer are further
processed by the projection head to predict value or action distribution.

A. Separate Modality Encoders

Proprioceptive states and visual observations are distinctively
different: the proprioceptive input is a 93-D vector and we use
depth images to encode the visual observations. To facilitate
domain-specific characteristics from both modalities, we use
two separate, domain-specific encoders for proprioceptive and
visual data, and unify the representation in a latent space.

We use an MLP to encode the proprioceptive input vector
into proprioceptive features Eprop ∈ RCprop

, where Cprop is the
proprioceptive feature dimension. We provide the policy with
visual information using first-person view depth images. In
comparison to commonly used third-person view in previous
visual reinforcement learning problems [27], [67], [43], first-
person view captures the obstacles from the perspective of



the acting robot, and it better reflects potential real-world
applications. For visual observations, we stack 4 depth images
as input, and encode the stacked depth images using a ConvNet.
The ConvNet encodes the depth map inputs into a spatial feature
representations Evisual with shape C × N × N in the latent
space, where C is the channel number, and N is the width
and height dimension of the feature. While the first-person
view is more realistic, the moving camera and the limited
field-of-view make learning visual policies significantly more
challenging. This makes it essential to leverage proprioceptive
information to improve visual understanding. In the following,
we present our proposed method for fusing the two modalities
and improving their joint representation using a Transformer.
B. Transformer Encoder

Locomotion in unstructured environments requires the agent
to be aware of its surroundings. As in Figure 1, the agent
should be aware of local information like nearby obstacles,
as well as global information such as overall layout, in order
to traverse the environment effectively. To do so, the agent
needs a mechanism for effectively fusing visual observations
containing mainly global information, and proprioceptive states
containining local information. Given a spatial, visual feature
map with shape C ×N ×N from the ConvNet encoder, we
split the spatial features into N ×N different C-dimensional
token embeddings tvisual ∈ RC (yellow tokens in Figure 1),
each corresponding to a local visual region. We use a fully-
connected layer to project the proprioceptive features into a
C-dimensional token embedding tprop ∈ RC (the green token in
Figure 1), such that we have N×N+1 tokens in total. Formally,
the tokens are obtained by tprop = W prop(Eprop) + bprop , T0 =
[tprop, tvisual

0,0 , tvisual
0,1 , ..., tvisual

N−1,N−1], tprop ∈ RC , tvisual
i,j ∈ RC ,

where tvisual
i,j is the token at spatial position (i, j) of the visual

features Evisual, and W prop, bprop are the weights and biases,
respectively, of the linear proprioceptive token embedding. We
denote Tm as the sequence of tokens after m Transformer
encoder layers, and define T0 as the input token sequence.

We adopt a stack of Transformer encoder layers [77] to
fuse information from the proprioceptive and visual tokens.
Specifically, we formulate the Self-Attention (SA) mechanism
of the Transformer encoder as a scaled dot-product attention
mechanism, omitting subscripts for brevity:

T q, T k, T v = TUq, TUk, TUv;W sum = Softmax(T qT k>/
√
D)

SA(T ) = W sumT vUSA, where Uq, Uk, Uv, USA ∈ RC×C ,
W sum ∈ R[(N2+1)]2 , D is the dimensionality of the SA layer.
SA applies three linear transformations on tokens to produce
embeddings T q, T k, T v, then compute a weighted sum over
input tokens, where the weight W sum

i,j for each token pair
(ti, tj) is computed as the dot-product of elements ti and tj
scaled by 1/

√
D and normalized by a Softmax operation. After

a matrix multiplication between weights W sum and values T v ,
we forward the result to a linear layer with parameters USA,
and denote this as the output SA(T ).

Each Transformer encoder layer consists of a SA layer, two
LayerNorm (LN) layers with residual connections, and an MLP
as shown in Figure 2 (right). This is formally expressed as,

T ′m = LN(SA(Tm) + Tm), Tm+1 = LN(MLP(T ′m) + T ′m)

where Tm, Tm+1 ∈ R(N2+1)×C , T ′m is normalized SA. For
SA is computed across multiple visual tokens and a single
proprioceptive token, proprioceptive information may gradually
vanish in transformer encoder layers; the residual connections
allow it to propagate more easily through the network.

We stack L Transformer encoder layers. Performing multi-
layer self-attention on proprioceptive and visual features enables
our model to fuse tokens from both modalities at multiple
levels of abstraction. Further, we emphasize that a Transformer-
based fusion allows for spatial reasoning, as each token has
a separate regional perceptive field, therefore self-attention
enables the agent to explicitly attend to relevant visual regions.
For modality-level fusion, direct application of a pooling
operation across all tokens would easily dilute proprioceptive
information since the number of visual tokens far exceed
that of the proprioceptive information. To balance information
from both modalities, we pool information separately for each
modality. We compute the mean of all tokens from the same
modality to get a single feature vector for each modality. We
then concatenate the proprioceptive and the visual feature
vector, and project the concatenated vector into a final output
vector using an MLP, which we denote the projection head.

Implementation Details. We use the same observation space
across all environments which is defined as follows: (i) propri-
oceptive data: a 93-D vector including IMU readings, local
joint rotations, actions taken by agent, and the displacement of
the base of the robot; and (ii) visual data: a stack of the 4 most
recent depth images with shape (64, 64). For the proprioceptive
encoder and projection head, we use a 2-layer MLP with hidden
dimensions 256. Our visual encoder outputs a 4 × 4 spatial
feature map with 128 channels, following [56]. Our shared
Transformer consists of 2 Transformer encoder layers with
hidden dimension 256.

IV. EXPERIMENTS

We evaluate our method using a simulated quadruped A1
Robot [76] in challenging environments in PyBullet [13].

A. Environments
We evaluate all methods in 6 distinct environments with

varying obstacles to avoid, and spheres to collect for reward
bonuses which are designed to evaluate high-level decision
making, e.g. avoiding obstacles and collecting spheres. The
environments are shown in Figure 1. We consider the following
environments: Wide Obstacle (Wide Obs.): wide cuboid
obstacles on a flat terrain, without spheres; Wide Obstacle
& Sphere (Wide Obs. & Sph.): wide cuboid obstacles on a
flat terrain, including spheres that give a reward bonus when
collected; Thin Obstacle (Thin Obs.): numerous thin cuboid
obstacles on a flat terrain, without spheres; Thin Obstacle &
Sphere (Thin Obs. & Sph.): same obstacles setting as Thin
Obs, but with spheres that give a reward bonus when collected;

B. Baseline and Experiment Setting
We train all agents using PPO [65], and compare our method

to both a state-only baseline that only uses proprioceptive states,
a depth-only baseline that only uses visual observation, and a
baseline that uses proprioceptive states and vision without our
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(a) Training and evaluation curves on environments with Obstacles and Sphere

Distance Moved ↑
Thin

Obs.(Train on
Wide Obs.)

Wide
Obs.(Train on

Thin Obs.)
State-Only 3.6±1.3 5.9±0.9

Depth-Only 1.1±1.1 0.1±0.0

State-Depth-Concat 5.57±2.1 7.14±2.00

Ours 8.2±2.5 14.2±2.8

Collision Happened ↓
Thin

Obs.(Train on
Wide Obs.)

Wide
Obs.(Train on

Thin Obs.)
State-Only 456.3±262.2 545.1±57.7

Depth-Only 0.0±0.0 0.0±0.0

State-Depth-Concat 406.8±89.5 331.1±192.8

Ours 310.4±131.3 82.2±103.8

(b) Generalization.
Fig. 3: (a) For environment without sphere, our method achieve comparable training performance (the first column) but much better evaluation
performance on unseen environments (the second column). For environment with sphere (the third column), our method achieve better
performance and sample efficiency. (b) We evaluate the generalization ability of all three methods by evaluating the policy on unseen
environment. Our method moved longer distance, and less Collision happened with our method.

proposed Transformer; we denote it as the State-Depth-Concat
baseline. For the State-Depth-Concat baseline, it use the exact
same proprioceptive and visual encoder as our method. Instead
of using a Transformer to fuse the multi-modality features,
the State-Depth-Concat baseline uses a linear projection to
project visual features into a feature vector that has the same
dimensions as the proprioceptive features, and feed it into
the value and policy networks. For all methods, the value
and policy network share the same proprioceptive and visual
encoder.

Evaluation Metric. We evaluate policies by (i) mean
episode return (ii) the distance an agent moved along its target
direction; and (iii) the number of time steps in which there is
collision between the robot and an obstacle within an episode.

C. Training & Quantitative Evaluation Results
Navigation. We train all methods on navigation tasks

with obstacles to evaluate the effectiveness of modal fusion
and stability of locomotion. Results are shown in Figure 3
(first column). Both our method and the State-Depth-Concat
baseline significantly outperforms the State-Only baseline
in both the Thin Obstacle and Wide Obstacle environment,
demonstrating the clear benefit of vision for locomotion in
complex environments. We observe that the simpler State-
Depth-Concat baseline performs just as well as our Transformer-
based model in these environments. We conjecture that this is
because the task of differentiating obstacles from flat terrain
is not perceptually complex, and a simple concatenation is
therefore sufficient for policy learning. Surprisingly, though
Depth-Only baseline have no access to proprioceptive states,
when the environment is relatively simple (like Wide Obs.
environment), agent can learn a policy..

We further evaluate the generalization ability of methods by
evaluating agents trained with thin obstacles to environments
with wide obstacles, and vice versa. Figure 3 (second column)
shows generalization measured by episode return, and Table 3b

shows average distance moved and number of collisions. While
the State-Depth-Concat baseline is sufficient for policy learning,
Our Transformer-based method improves episode return in
transfer by 69% and 56% in the wide and thin obstacle environ-
ments, respectively, over the State-Depth-Concat baseline. We
observe that our method moves significantly farther on average,
and reduces the number of collisions by 402% and 663% over
the State-Depth-Concat and State-Only baselines, respectively,
when trained on thin obstacles and evaluated on wide obstacles.
Interestingly, we observe that the generalization ability of the
State-Depth-Concat decreases as training progresses, whereas
it for our method either plateaus or increases over time. This
indicates that our method is more effective at capturing essential
information in the visual and proprioceptive information during
training, and is less prone to overfit to training environments.

Navigation with Spheres. We now consider a perceptually
more challenging setting with the addition of spheres in the
environment; results are shown in Figure 3 (third column).
We observe that with the addition of spheres, the sample
efficiency of both the State-Depth-Concat baseline and our
method decreases. While spheres that provide positive reward
provide the possibility for higher episode return, spheres
increase complexity in two ways: (i) spheres may lure agents
into areas where it is prone to get stuck; (ii) although spheres
do not block the agent physically, they may occlude the agent’s
vision and can be visually difficult to distinguish from obstacles.

V. CONCLUSION
We propose to incorporate the proprioceptive and visual

information with the proposed LocoTransformer model for
locomotion control. By borrowing the visual inputs, we
show that the robot can plan to walk through different sizes
of obstacles both in seen and unseen environments. This
shows our Transformer model provides an effective fusion
mechanism between proprioceptive and visual information and
new possibilities on RL with information from multi-modality.
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